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Some of the basic results of the quantum theory of measurement are reviewed 
and an application of the theory of sequential measurements to a determination 
of a geometric phase in a measurement cycle is discussed. 

1. INTRODUCTION 

The quantum theory of measurement is the theory of a measurement 
process within quantum mechanics. This theory was initiated by von 
Neumann (1932), and his formulation of the measurement process within 
the theory of  compound systems in quantum mechanics has become a 
paradigm for measurements (Jauch, 1968; Beltrametti and Cassinelli, 1981; 
Wheeler and Zurek, 1983). However, in recent years von Neumann's model 
has been extended in various ways to cover whole classes of  measurements 
of arbitrary observables (as pov measures). The systematic theory of 
measurement which has thus emerged has opened up a possibility of  
investigating the consistency of  the interpretation of quantum mechanics as 
a theory of individual objects (see, e.g., Mittelstaedt, 1993), of  studying 
various properties of measurements, such as repeatability, ideality, and 
correlations, and of  working out experimentally testable consequences of 
the measurement theory. All this development has been greatly stimulated 
by the advanced opportunities for experimenting with individual atomic 
objects, as demonstrated by many ingenious experiments, such as the 
correlation experiments on pairs of photons, or the interferometer experi- 
ments with individual neutrons, or the various trapping experiments with 
atomic particles. For the topic of the present paper it is particularly 
impressive to note that, for instance, the continuous Stern-Gerlach effect 
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allows one " to  perform and repeat a quantum measurement on the same 
individual atomic particle, as often as one pleases" (Dehmelt, 1990). 

The aim of my paper is to present an overview of some of the main 
achievements in the systematic development of  the quantum theory of  
measurement, and to present an application of this theory to a determina- 
tion of the geometric phase accumulating in a sequence of  measurements 
on an individual object. 

To establish a common language and notations, I shall start with a 
brief summary of the most relevant aspects of the Hilbert space description 
of quantum mechanics, based on the dual concepts of  states and observ- 
ables, and their probability measures. 

Let ~ be a (complex, separable) Hilbert space representing a physical 
system 5 ~. Let LP(Yg) stand for the set of bounded linear operators on Jg, 
and let Y'(~g) denote its subset of  trace class operators. An observable of 
5e is represented as (and identified with) a positive operator valued measure, 
a POV measure E: ~" ~ 5r defined on a measurable space (f~, i f ) ,  the 
space of values of E. Usually, (fL ~ )  is the real Borel space (91n, ~(91n)) for 
some n = 1, 2 . . . . .  Among the observables are those represented by projec- 
tion operator valued measures, PV measures. They can be identified with 
self-adjoint operators A (acting in 3r176 provided that the value space of the 
observable is just the usual one, (9t, N(91)). A state of  6e is represented as 
(and identified with) a positive trace-one operator TsW(Jcg)~-. Again, 
among the states there are the pure states P[q~], or the vector states ~0, defined 
by the unit vectors q) of  Jg (as P[q~]~ .'= (q~l~)q~, ~k ~ ) .  

The important structure is that any observable E and state T define a 
probability measure p~ on the space of the values of  E, 

pC(X) := tr[TE(X)], X e ~  (1) 

for which the minimal interpretation is adopted: the number p~(X)  is the 
probability that a measurement of E on the system in the state T leads to 
a result in the set X. 

Since I shall refer frequently to an observable given by a discrete 
self-adjoint operator, let me fix here also this special case. Let A = ~ aiP~ 
be a discrete self-adjoint operator with the eigenvalues a i and the associated 
spectral projections P~. The important feature of such an operator is that 
there are orthonormal bases {q~0} of  ~ consisting of eigenvectors of A; 
A~% = aiq~j, with the second index counting for the (possible) degeneracy 
of  the eigenvalue a,-. If  q~ is a (vector) state of 6e, then ~o = ~ j  (q~;j ko)q~ij, 
and one gets 

p~(ai) = 2 ](q~01q~)[ 2 (2) 
J 

as the probability that a measurement of A would lead to the result ai. 
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2. M E A S U R E M E N T  T H E O R Y  

The quantum theory of measurement, as presented here, is an obvious 
(though nontrivial) generalization of  yon Neumann's  (1932) model. Hence 
I shall recall first the construction of  this paradigm. As expected, yon 
Neumann's model turns out to be an important special case of  a repeatable 
measurement of an observable represented as a discrete self-adjoint opera- 
tor. 

2.1. The Measurement Scheme 

Consider an observable given by a discrete self-adjoint operator 
A = ~ aiPi. To construct a measurement model for this observable, one 
usually starts by choosing an orthonormal basis {~0,y} for ~,~ consisting of  
eigenvectors of A. Consider then an apparatus ~r represented by a Hilbert 
space ~ ,  of the dimension equal to the number of  distinct eigenvalues ai 
of A, and let {~bi} be any of  its basis. Choose a pointer observable 
Z = ~iz~P[~]. Let q5 be the initial state of  the apparatus, and define a 
unitary mapping UvNL via the relation 

UoNL(~0 |  = Y~ <~00 I~o)~o0 | ~, (3) 

The mapping U~NL, which acts on the tensor product Hilbert space 
| ~ ,  of the compound object-apparatus  system 6 e + ~r is meant to 

represent a measurement interaction between 6 a and ~r correlating the 
values of the measured observable A with those of  the pointer observable 
Z. If (p is the state of 50 before the measurement, then U, NL(q~ | qS) is the 
state of ~ + ~ after the measurement. In particular, U~NL(q) | ~9) deter- 
mines the state of the apparatus after the measurement as the reduced state 
W A ~ p~(a~)p[dpe]" It will now be immediate to observe that the measure- 
ment model defined by the items H~/, Z, q~, and UvNc satisfies the condition 

if p~(ai) = 1 then also pZ(z,)  = 1 (4) 

This condition is equivalent to the seemingly stronger condition 

A p~ (a,) = p ~ ( z , )  (5) 

for all i = l, 2 . . . .  and for all initial states ~o of 5~ This is the measurement 
model of von Neumann; it is a prototype of  measurements often called yon 
Neumann-Lfiders  or Lfiders measurements. 

Consider now an arbitrary observable E, represented as a eov  mea- 
sure. If  T is the state of  5 P, then p~(X) is the probability that a measure- 
ment of  E on S~ in the state T will lead to a result in the set X. To build 
up a measurement theory for E one usually goes along with the above ideas 
fixing first a measuring apparatus ~r (with a Hilbert space afro,), its initial 
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state T~ ~3-(4fd) +, a pointer observable P j  : ~ --+ 5e(~vgd) [with its value 
space ( ~ ,  ~ ) ]  together with a (measurable) pointer function f: ~ ~ 
(which correlates the pointer values with the values of the measured 
observable), and a measurement coupling V: Y ( ~  | ~t~) ~ ~-'(Je | Jg~) 
(a positive linear trace preserving mapping). The interpretation of the 
resulting 5-tuple { ~ , ,  Po~, T~,, V , f )  as a measurement of the observable 
E starts with the idea that if T ~ Y ( ~ )  + is the initial state of 5 p, then 
V(T|  Td) is the final state of the compound system 5 p + d ,  with the 
reduced states ~ j ( V ( T |  T~)) and ~ d ( V ( T |  T~)) being thus the states 
of 5 ~ and d after the measurement. Let me recall that, for example, the 
state ~ ( V ( T |  Td))  is defined as the partial trace of V(T|  T~,) over the 
apparatus Hilbert space Jg~,; that is, as the state of 5P for which 

t r [ ~ ( V ( T  | T~))B] = tr[V(T | T~)B | I] (6) 

for any B ~ ~(Jt~). 
The basic requirement for { ~ ,  Pal, T~, V , f )  to constitute a mea- 

surement of E is derived from the interpretation of  the numbers pC(X) as 
probabilities for measurement outcomes. Indeed, if pC(X)= 1, then one 
would expect that the pointer observable would show this value after the 
measurement with certainty, that is, t r [ ~ , ( V ( T |  T~))P~(f-I(X))]  = 1. 
This is the calibration condition of a measurement. When dealing with POV 
measures this condition is, however, not enough to recover the whole 
measurement outcome distribution X ~ pC(X) from the distribution of the 
pointer values after the measurement. For that end, the whole probability 
reproducibility condition is needed: 

P~ 
p~(X) = P g+(v(T| 7;+))(f-l(X)) (7) 

for all X+@, and for any T e J - ( g f ) i  + . 
It is obvious that a quintuple {W~+, P~+, T u, V , f }  satisfying condition 

(7) does not exhaust the physics of a measurement of an observable E. 
Further assumptions and conditions on {gf+, Po+,, T~+, V , f )  are needed; in 
particular, those aiming to explain the idea that a measurement leads to a 
definite result. Typically various correlation conditions or even the so- 
called objectification requirement have been studied in that context (Busch 
et al., 1991; van Fraassen, 1991). For  the present purposes the probability 
reproducibility condition is the most crucial (and minimal) condition for 
{ ~ ,  P~,, T~, V , f }  to constitute a measurement of E. Therefore, for the 
sake of terminological simplicity, any quintuple {2/f~,, P.s, T~z, V , f )  which 
fulfills this condition is called here a measurement of  E, and it is denoted 
simply as rig. For  a more extensive study of the measurement process as 
presented above, see, for instance, Busch et al. (1991), where references to 
many important original contributions can also be found. 
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Before describing the basic results of  the quantum theory of measure- 
ment I shall introduce an important subclass of measurements. 

Consider a measurement d/' of  an observable E. This measurement is 
unitary if the measurement coupling V is given by a unitary operator U, 
that is, V(T|  Z_~,) = U(T|  T~)U* for some unitary mapping U acting on 
~(( | and it is normal if the pointer observable P ~  is a PV measure 
with the same value space and scale as E, and if the initial state of  d is a 
vector state q~. A normal unitary measurement of E is denoted by ~/u .  
Clearly, the von Neumann model ( ~ ,  Z, ~b, U~,NL ) is a normal unitary 
measurement of  A = ~ a~Pi. In fact, any unitary mapping 

u: ~ |  ~ ~(~o~t~5~,~|162 (8) 

with (~0) c 2/d, H0,v II = 1, (~i2 I ~ ' 5  = 6jj., defines together with 9ff.~,, ~b, and 
Z another normal unitary measurement of A (Beltrametti et al., 1990). 

2.2. Basic Results 

Consider, again, a measurement J// of  an observable E. It defines a 
transformation of the states of the system conditionalized with the mea- 
surement outcome. This is most conveniently expressed by the instrument 
induced by d//, which is just a state transformation valued measure 
�9 (z/ :  g -~ ~e(g-(~f)) + given by 

J~ / (X)T:=  ~s~ [V(T | T=,) �9 I | P~(f - I (X))]  (9) 

for all X e W ,  TeY-(J f~) i  ~ . Clearly, this instrument is compatible with the 
measured observable, that is 

p~(X) = tr[J/~(X)T], X~@, TeY(Hs~)~- (10) 

This means that the measurement determines uniquely the measured ob- 
servable. Moreover, the instrument J u  gives the transformation of the 
state of the system under the measurement: T ~ J~(X)T,  where J~I/(X)T 
is the (nonnormalized) state of 5 f after the measurement on the condition 
that the measurement led to a result in the set X. Strictly speaking, the 
condition here refers, in the first instance, to the value f -~(X)  of the 
pointer observable; for details, see Cassinelli and Lahti (1992). The instru- 
ment JL/ thus contains all the information on the measurement Jr 
relates directly to the measured system. 

To illustrate the above ideas with a familiar example, let us observe 
that the instrument S ,  A defined by the measurement ( ~ ,  Z, (9, UrN L ) of 
A = ~ a~P~ has the form 

P[~o] ~-~ .JA(x)P[q)].'= ~ P~P[p]P~ =- ~ pA(a~)P[cp~ (1l)  
aicX ai~X 
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where q~' .'= P~q~/p~(a~). In a similar way, one may quickly confirm that the 
instrument defined by a unitary mapping (8) takes the form 

P[~o] F-. J~(X)P[q~]:= ~ p~(ai)P[7~] (12) 
ai~" 

where 7i is the normalized form of the vector ~/(q~/]~P)~0- 
It may well happen that two measurements d / / and  ~ of E define the 

same instrument, that is, ~.r162 = J..7~. One then says that the measurements 
are equivalent. Recalling that an instrument is completely positive if all its 
operations are completely positive (Davies, 1976), one may observe that 
the instrument J u  induced by a normal unitary measurement ~ /~  of E is 
completely positive. The following result, due to Kraus (1983) and Ozawa 
(1984), is the basic one: 

Lemma. Any E-compatible, completely positive instrument J is of the 
form J = J u  for some normal unitary measurement ~ ' u  of E. 

When this result is taken together with the simple fact that for each 
observable E there exist E-compatible completely positive instruments, we 
arrive at the fundamental existence result: 

Theorem. For any observable there exist normal unitary measure- 
mems. 

This result means that physical quantities, represented as eov mea- 
sures, can be measured. It may also be taken as an excuse to use the 
blamed term observable instead of the more neutral concept of a physical 
quantity (L6vy-Leblond and Balibar, 1989). 

2.3. Repeatable Measurements 

The von Neumann-Ltiders  measurement ( ~ , ,  Z, ~b, U,,NL) of an 
observable A = ~ aiPi has a number of important properties. In particular, 
it is repeatable, that is, its repeated application does not lead to a new 
result. Indeed, the probability of obtaining a result al upon repetition, on 
the condition that the preceding measurement just gave this result, equals 
one. This idea can be formulated in the present context in various equiva- 
lent ways, the most suggestive being the following one: 

A p~ui(ai) = 1 (13) 

where ~o", is the (normalized vector) state of 3e after the (first) measure- 
ment, on the condition that it led to the result ai. In terms of the 
instrument J ~  this condition reads 

t r [ J  ~ (a~)J ~ (a~)P[cp]] = t r [ J  ~ (a~)P[q~]] (14) 
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and it is valid for any initial state of  the system and for all possible values 
of A. 

Since the pioneering work of  von Neumann (1932) it has been an 
important problem to find out the conditions under which a measurement 
is repeatable. This problem has now been essentially solved. 

Consider a measurement Jg of an observable E. In accordance with 
the above ideas, J{  is repeatable if its instrument d #  is repeatable, that is 

tr[d~z (X)J~z (X) T] = t r [~z  (X) T] (15) 

for all TcY(~4,~ + and for all X~ ,~ .  [For  a more detailed analysis of this 
concept, see, e.g., Busch et al. (1991) and Lahti et al. (1991).] 

The following result gives a necessary condition for ~ to be repeat- 
able. 

Theorem. If  a measurement is repeatable, then the measured observ- 
able is discrete. 

Remark.  This result presumes that the value space (fL o~) of the 
instrument ~,,/ is a standard Borel space, an assumption which seems to 
exclude no physically relevant cases. In particular, the real Borel spaces 
(9t n, N'(9t")) are such. The proof  of  the theorem is due to Luczak (1986). 
Ozawa (1984) also proved the same result under the additional assumption 
that the measurement is equivalent to a unitary measurement. 

Clearly, a measurement of a discrete observable, like A = ~ a~P~, need 
not be repeatable. On the other hand, any discrete observable represented 
as a 1,v measure admits a repeatable measurement, for instance, a von 
Neumann-Lfiders  measurement. Sufficient conditions for a discrete observ- 
able E: coi ~E~ to admit a repeatable measurement can be formulated 
(Cassinelli and Lahti, 1992; Ozawa, 1984; Luczak, 1986). What is impor- 
tant, however, is the above-quoted result, which states that an observable 
must be discrete in order to admit a repeatable measurement. 

In concluding this Section, I shall describe conditions on measure- 
ments which imply that they are equivalent to the prototype measurement 
of yon Neumann. 

Another important property of the von Neumann-L/ iders  measure- 
ment is its ideality, that is, it changes the state of the system only to the 
extent necessary for the measurement outcome. There are again various 
alternative formulations of  this notion. However, in the context of discrete 
observables coi ~ E~ the most obvious one is perhaps the following: 

if p~(coi) = 1, then J/~(~oi)T = T (16) 
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For discrete observables represented as ev measures the ideality of a 
measurement already implies that the measurement is equivalent to a v o n  
Neumann-Lfiders measurement; see, for instance, Lahti et al. (1991). 
Thus, a repeatable ideal measurement of an observable represented by a ev 
measure is equivalent to a von Neumann-L/iders  measurement. For ob- 
servables which are given as eov measures an additional technical require- 
ment is needed. This is the nondegeneracy or faithfulness assumption. A 
measurement JC{ is faithful if its instrument Jf~ is faithful, that is, if for any 
B~L~(Jf),~the conditions tr[Jdt(X)TB ] = O, X ~ ,  and T~J-(ovg)+ imply 
that B = O (Davies, 1976). Indeed, if an observable admits a repeatable 
faithful measurement, then the observable is a discrete ev measure (Davies, 
1976; Luczak, 1986). Hence we may conclude with the following statement: 

Theorem. An ideal repeatable faithful measurement is equivalent to a 
von Neumann-Liiders  measurement. 

3. SEQUENTIAL MEASUREMENTS 

The theory of measurement presented above is important in at least 
two aspects. It lends itself directly to a systematic study of various types of 
measurements, and it allows one to investigate in a satisfactory way the 
interpretational issues of quantum mechanics. However, it is its derivative, 
the theory of sequential measurements, which has direct experimental 
consequences. I shall now recall those parts of this theory which are needed 
for its application to a problem of a geometric phase. 

3.1. General Theory 

Consider any two measurements J///j and Jr of observables E1 and 
E2, and let J l  and d2 be their instruments. These measurements may be 
combined to yield a sequential measurement of the two observables in 
question performing them on ~ one after the other in either order. 
Without entering into the technical details [for which see Davies and Lewis 
(1970) and Busch et al. (1990)], let ~ . 2  stand for the sequential measure- 
ment obtained by performing first the E~-measurement d//~ and then, in 
immediate succession, the Ez-measurement rig2. Let d~2 denote the 
resulting instrument. One may show that this instrument is, in fact, the 
composition of the instruments J l  and J2, that is, ,~12(X x ~f~)T = 
J2(Y)(JI(X)T) for all value sets X e ~ .  and Ye~2 and for all states 

The probability that the sequential E1Ez-measurement on ~ in the 
state T leads to a result in (X, Y) is 

t r[J2(Y)(Jl  (X)T)] = p~'(X),  p ~ ( Y )  (17) 
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where T x  =- J l  (X)T/pET~(X) is the state of  5 ~ after the first measurement on 
the condition that it led to a result in X. These probabilities are called 
sequent ial  probabil i t ies .  They depend explicitly on the first measurement. 
Thus, if one is able to perform, at all, sequential measurements, such 
measurements would immediately serve also as tests between the applied 
measurement models. Dicke (1989) proposes a realistic sequential photon 
polarization experiment. It still remains to be seen whether such measure- 
ments can in fact be carried out. As to the sequential probabilities, it is to 
be noted that they do not depend on whether the conditioning, that is, the 
reading of results, is done stepwise or only terminally. 

The sequential outcome (X, Y) is accompanied by a state transforma- 
tion 

T ~-~ J , 2 (X  x Y ) T  = J 2 ( Y ) ( J l ( X ) T )  (18) 

The final state of 6P--wi th  the condition (X, Y)- -depends  on the two 
measurements, but again it does not depend on the conditioning whether it 
is stepwise or not. However, with intermediate conditioning one would get 

T ~ J I ( X ) T  ~ J 2 ( Y ) ( J I ( X ) T )  

Consider now a (finite) sequence of measurements of the observables 

A ' =  ~ a~P s, s = 1 . . . . .  n (19) 

on the system prepared initially in a pure state P[q~], and assume that the 
involved measurements are of the type (8). The relevant state transforma- 
tions are then of the form (12). The probability that such a sequential 
measurement of the observables A1, A z , . . . ,  A n leads to an outcome 
sequence (a~ t, a 2 2 , . . . ,  a~,) is then simply 

p A l i a l  ~ ~A2 t a 2  ~ . A~ n 
~o t k ,J  " t-'72 t k2J " " PT;,,,;Ll (ak . )  

p l  1 p 2  1 n - 1  p n  ~ . n - 1  ", =(q) l  k,rP)(Tkll k J ~ , ) ' "  (20) (7k,, _ ~ k. Yk._~/ 

Such an outcome is accompanied by the state change 

P[~0] --, P[VL] (21) 

which can formally be decomposed as 

P[q)] --* P[71,] ---' " "  ~ P[7/~.] (22) 

This sequence of  state changes is, however, not given by the above 
sequential A 1 - . .  An-measurement with the result ( a~  . . . . .  aT,,), but it is 
subject to a further assumption, namely sequent ia l  condit ioning.  This is the 
assumption that after each involved A S-measurement the conditioning with 
respect to the pointer value zks is obtained. In other words, the sequential 
state change (22) is obtained in the course of  the sequential A ~ . .  �9 A"-mea- 
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surement if after each AS-measurement the measurement outcome zks is 
registered. It is to be emphasized that in both cases (intermediate condi- 
tioning or not) the probability of obtaining the outcome sequence 
(a~, . . . .  , aft,) as well as the final (conditional) state P[77~,] of the system 
are the same; they d o  not depend on the type of conditioning whether 
obtained stepwisely or only terminally. To obtain also the intermediate 
states P[7~,s] requires, however, intermediate conditionings. 

For the application in mind, let us close the above measurement 
sequence with a measurement of the simple observable 

A ~ = a~ + a ~  - e[qo]) (23) 

choosing a U~ set 0 (0,7);.j>- i in (8) such that ~k ~ = q~. The cyclic 
state change 

P[q0] ~ P[q~] (24) 

�9 a n is then associated with the outcome sequence (a]~, . .  , k , , a ~  the 
probability of which is 

p A l : ~ l  A 2 2 A 0 ."  0 
t-k~) " ) P~21 (ak2) " " " P ~ L t  a + 

~.  ( q ? l P l l ( ] ? > ( ~ l  p 2  ,1 \ . � 9  n , k 2 r k , /  "(Tk. IP[cP]Y~.) (251 

With the assumption of sequential conditioning the state change (24) 
decomposes into a cycle 

Ptq3] --+ P[7 ~, 1 + " '"  --+ P[Y •.] -+ P[rP] (26) 

3.2. Geometric Phase 

It has been argued in the literature (Samuel and Bhandari, 1988; 
Anandan and Aharonov, 1988) that the measurement process like (26) 
gives rise to an experimentally measurable geometric phase. The develop- 
ment of a geometric phase in the course of such a process remains, 
however, undefined, since (26) gives only the n + 1 points in the projective 
space of the pure states, and not any curve connecting these points�9 To 
define a geometric phase for the process (26), one may proceed as follows 
(Cassinelli e t  al. ,  1992). Let 

i~ I . ~ i~ . .  " (27) C: q~--*e ~Tk~  "" e 7k ~e '~q)-~0 

be any closed curve of unit vectors in Yg such that its canonical projection 
n(C) on the projective space of pure states consists of geodesic lines 

�9 �9 . ~ p  n connecting the succeeding states P[~o], P[71,], [7k,], and P[q~]. Define 

r..= - i  ( ol&0> (28) 
d e  
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It can be shown that F does not depend on the phases of  the involved 
vectors, but only on the geodesic lines connecting the states in (26). The 
assumption that the geometric phase accumulated in the measurement 
process (26) is given by F is referred to as the geodesic hypothesis 
(Cassinelli et al., 1992). It is to be emphasized that a sequential measure- 
ment process like (24) does not define in itself a geometric phase. To obtain 
that, some supplementary assumptions, here the sequential conditioning 
and the geodesic hypothesis, are always needed. 

The phase F can be calculated explicitly, and one gets 

F = arg((~o }P[?~, ] " '  P[~ ~] lop ) (29) 

where arg(c) is the argument of  the complex number c (Cassinelli et al., 
1992). From this expression it is clear that the geometric phase depends 
only on the states P[7~:,] and not on the vectors 7~i. 

It is evident that F depends on the two assumptions, the sequential 
conditioning and the geometric hypothesis, but also on the involved 
measurements. If  the applied AS-measurements were von N e u m a n n -  
Lfiders measurements, one would get 

I'vu L = arg(((p [P~) �9 �9 �9 p(kl~ (p)) (30) 

which, in general, differs from (29). 
An experimental determination of the geodesic phase in a cyclic 

sequential measurement process would thus provide a test of (1) the 
validity of  the geodesic hypothesis, (2) the validity of the assumption on 
the sequential conditioning, and (3) the validity of the applied measure- 
ment model. The possibility of an experimental determination of the 
geometric phase in sequential measurements is anticipated in Samuel and 
Bhandari (1988), whereas Dicke (1989) proposes a realistic model for' 
sequential photon polarization measurements. 
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